Parametric investigation of the effects of load level on fatigue crack growth in trabecular bone based on artificial neural network computation

Author:

Mouss Marouane El1ORCID,Zellagui Said1,Nasraoui Makrem1,Hambli Ridha1

Affiliation:

1. University of Orléans, University of Tours, INSA CVL, LaMé, Orléans, France

Abstract

This study reports the development of an artificial neural network computation model to predict the accumulation of crack density and crack length in cancellous bone under a cyclic load. The model was then applied to conduct a parametric investigation into the effects of load level on fatigue crack accumulation in cancellous bone. The method was built in three steps: (1) conducting finite element simulations to predict fatigue growth of different three-dimensional micro-computed tomography cancellous bone specimens considering input combinations based on a factorial experimental design; (2) performing a training stage of an artificial neural network based on the results of step 1; and (3) applying the trained artificial neural network to rapidly predict the crack density and the crack length growth for cancellous bone under a cyclic loading for a given applied apparent strain, cycle frequency, bone volume fraction, bone density and apparent elastic modulus.

Funder

fondation pour la recherche médicale

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning in Biomaterials, Biomechanics/Mechanobiology, and Biofabrication: State of the Art and Perspective;Archives of Computational Methods in Engineering;2024-05-04

2. Fatigue modeling using neural networks: A comprehensive review;Fatigue & Fracture of Engineering Materials & Structures;2022-01-07

3. Fuzzy Membership Functions in ANFIS for Kinematic Modeling of 3R Manipulator;Handbook of Smart Materials, Technologies, and Devices;2022

4. Fuzzy Membership Functions in ANFIS for Kinematic Modeling of 3R Manipulator;Handbook of Smart Materials, Technologies, and Devices;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3