Finite element modelling of an energy–storing prosthetic foot during the stance phase of transtibial amputee gait

Author:

Bonnet Xavier1,Pillet Hélenè1,Fodé Pascale2,Lavaste Francois12,Skalli Wafa1

Affiliation:

1. Arts et Metiers ParisTech, Laboratoire de Biomecanique, 151 bd de l’hôpital 75013 Paris, France

2. Institution Nationale des Invalides, Centre d’Etudes et de Recherche sur l’Appareillage des Handicapés, F-57140 Woippy, France

Abstract

Energy-storing prosthetic feet are designed to store energy during mid-stance motion and to recover it during late-stance motion. Gait analysis is the most commonly used method to characterize prosthetic foot behaviour during walking. In using this method, however, the foot is generally modelled as a rigid body. Therefore, it does not take into account the ability of the foot to deform. However, the way this deformation occurs is a key parameter of various foot properties under gait conditions. The purpose of this study is to combine finite element modelling and gait analysis in order to calculate the strain, stress and energy stored in the foot along the stance phase for self-selected and fast walking speeds. A finite element model, validated using mechanical testing, is used with boundary conditions collected experimentally from the gait analysis of a single transtibial amputee. The stress, strain and energy stored in the foot are assessed throughout the stance phase for two walking speed conditions: a self-selected walking speed (SSWS), and a fast walking speed (FWS). The first maximum in the strain energy occurs during heel loading and reaches 3 J for SSWS and 7 J for FWS at the end of the first double support phase. The second maximum appears at the end of the single support phase, reaching 15 J for SSWS and 18 J for FWS. Finite element modelling combined with gait analysis allows the calculation of parameters that are not obtainable using gait analysis alone. This modelling can be used in the process of prosthetic feet design to assess the behaviour of a prosthetic foot under specific gait conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3