Biomechanical dynamic comparison of biodegradable pins and titanium screws for operative stabilization of displaced radial head fractures

Author:

Wagner Ferdinand C12ORCID,Feucht Matthias J13,Konstantinidis Lukas12,Hohloch Lisa12,Yilmaz Tayfun12,Bernstein Anke2,Südkamp Norbert P12,Reising Kilian14

Affiliation:

1. Department of Orthopedics and Trauma Surgery, Freiburg University Hospital, Freiburg, Germany

2. G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany

3. Department of Orthopaedic Sports Medicine, Klinikum Rechts der Isar, TU Munich, Munich, Germany

4. Department of Trauma Surgery, Asklepios Klinikum Hamburg, Hamburg, Germany

Abstract

For radial head osteosynthesis, biodegradable implants are gaining in importance to minimize cartilage destruction and implant impingement and to supersede implant removal. Since loss of reduction and pseudarthrosis remain challenging complications, new implants should at least provide comparable biomechanical properties as commonly used metal implants. The objective of this study was to compare the treatment by polylactide pins to titanium screws and to quantify the produced cartilage defects. Eight pairs of human cadaver radii with a standardized Mason type II fracture were stabilized either by two 2.0-mm polylactide pins or titanium screws. The produced cartilage defects were quantified using an image analyzing software. Quasi-static loading was performed axially and transversally for 10 cycles each between 10 and 50 N. Afterward, implant loosening was tested by axial loading up to 10,000 cycles, followed by load to failure testing. Polylactide pins showed less construct stiffness under axial (p = 0.017) and transversal (p = 0.012) loading, and one polylactide pins construct failed after two cycles of transversal loading. At axial loading, a high correlation between bone mineral density and construct stiffness was observed among polylactide pins (R = 0.667; p = 0.071), which was not seen among titanium screws (R = 0.262; p = 0.531). No difference in implant loosening was recorded after 10,000 cycles (p = 0.237); however, one polylactide pins construct failed after 30 cycles and failure loads were higher for titanium screws (p=0.017). Polylactide pin produced smaller cartilage defects (p=0.012). In conclusion, simple radial head fractures treated by polylactide pins show less biomechanical stability than treated by titanium screws, particularly in osteoporotic bone which might lead to secondary loss of reduction. Due to smaller cartilage defects and equal properties under continuous loading, polylactide pins might represent a gentle alternative in patients with good bone quality making subsequent implant removal redundant.

Funder

AO Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3