Is implant choice associated with fixation strength for displaced radial neck fracture: a network meta-analysis of biomechanical studies

Author:

Su Yu-Cheng,Wang Ying-Yu,Fang Ching-Ju,Su Wei-Ren,Kuan Fa-Chuan,Hsu Kai-Lan,Hong Chih-Kai,Yeh Min-Long,Lin Chii-Jeng,Tu Yu-Kang,Shih Chien-An

Abstract

AbstractThe multitude of fixation options for radial neck fractures, such as pins, screws, biodegradable pins and screws, locking plates, and blade plates, has led to a lack of consensus on the optimal implant choice and associated biomechanical properties. This study aims to evaluate the biomechanical strength of various fixation constructs in axial, sagittal, and torsional loading directions. We included biomechanical studies comparing different interventions, such as cross/parallel screws, nonlocking plates with or without augmented screws, fixed angle devices (T or anatomic locking plates or blade plates), and cross pins. A systematic search of MEDLINE (Ovid), Embase, Scopus, and CINAHL EBSCO databases was conducted on September 26th, 2022. Data extraction was carried out by one author and verified by another. A network meta-analysis (NMA) was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Primary outcomes encompassed axial, bending, and torsional stiffness, while the secondary outcome was bending load to failure. Effect sizes were calculated for continuous outcomes, and relative treatment ranking was measured using the surface under the cumulative ranking curve (SUCRA). Our analysis encompassed eight studies, incorporating 172 specimens. The findings indicated that fixed angle constructs, specifically the anatomic locking plate, demonstrated superior axial stiffness (mean difference [MD]: 23.59 N/mm; 95% CI 8.12–39.06) in comparison to the cross screw. Additionally, the blade plate construct excelled in bending stiffness (MD: 32.37 N/mm; 95% CI − 47.37 to 112.11) relative to the cross screw construct, while the cross-screw construct proved to be the most robust in terms of bending load failure. The parallel screw construct performed optimally in torsional stiffness (MD: 139.39 Nm/degree; 95% CI 0.79–277.98) when compared to the cross screw construct. Lastly, the nonlocking plate, locking T plate, and cross-pin constructs were found to be inferior in most respects to alternative interventions. The NMA indicated that fixed angle devices (blade plate and anatomic locking plate) and screw fixations may exhibit enhanced biomechanical strength in axial and bending directions, whereas cross screws demonstrated reduced torsional stability in comparison to parallel screws. It is imperative for clinicians to consider the application of these findings in constraining forces across various directions during early range of motion exercises, taking into account the distinct biomechanical properties of the respective implants.

Funder

National Science and Technology Council

Ministry of Science and Technology, Taiwan

National Cheng Kung University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3