Feed rate control in robotic bone drilling process

Author:

Boiadjiev Tony1,Boiadjiev George2ORCID,Delchev Kamen23ORCID,Chavdarov Ivan2,Kastelov Roumen4

Affiliation:

1. Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria

2. Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria

3. Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria

4. Orthopedic and Trauma Clinical Centre, Ministry of Interior, Sofia, Bulgaria

Abstract

The bone drilling process is characterised by various parameters, the most important of which are the feed rate (mm/s) and the drill speed (rpm). They highly reflect the final effects and results of the drilling process, such as mechanical and thermal damages of bone tissue and hole quality. During manual drilling, these parameters are controlled by the surgeon based on his practical skills. But automatic drilling can assure an optimal result of the manipulation where such parameters are under control. During bicortical automatic bone drilling such a process consists of several stages: searching the contact with the first cortex, cortex drilling and automatic stop; searching the contact with the second cortex, cortex drilling and automatic stop; drill bit extraction. This work presents a way to control the feed rate during different stages of the bone drilling process (an original feed rate control algorithm) using the orthopaedic drilling robot (ODRO). The feed rate control is based on a proposed algorithm created and realised by specific software. During bicortical bone drilling process the feed rate takes various values in any stage in the range 0.5–6 mm/s. These values depend on drill bit position and real time force sensor data. The novelty of this work is the synthesis of an original feed rate control algorithm to solve the main problems of bone drilling in orthopaedic surgery – minimisation the drilling time (the heat generation); eliminating of the drill bit slip at the first (near) cortex and the drill bit bending at the second (far) cortex; minimising the risk of micro cracks which causes Traumatic Osteonecrosis; improving hole quality of the drilled holes; eliminating of the drill bit slip and the drill bit bending at the second cortex; minimising the value of the second cortex drill bit penetration by bicortical bone drilling.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3