Deep learning-based wind noise prediction study for automotive clay model

Author:

Huang LinaORCID,Wang Dengfeng,Cao Xiaolin,Zhang Xiaopeng,Huang Bingtong,He Yang,Grabner Gottfried

Abstract

Abstract Analyzing and mitigating wind noise in automobiles is a significant issue within the realm of noise, vibration, and harshness. Due to the intricate nature of aeroacoustic generation mechanisms, current conventional methods for wind noise prediction exhibit limitations. Hence, deep learning methods are introduced to investigate wind noise in the side window area of an automotive clay model. During aeroacoustic wind tunnel experiments, side window vibration data and noise data from the driver were collected at experimental wind speeds of 100 km h−1, 120 km h−1, and 140 km h−1, respectively. These data samples were obtained to be used for training and validation of the wind noise model. Convolutional neural network (CNN), residual neural network (ResNet) and long short-term memory neural network (LSTM) algorithms were separately employed to reveal the complex nonlinear relationship between wind noise and its influencing factors, leading to the establishment of a wind noise prediction model. Simultaneously, these deep learning methods were compared with backpropagation neural network (BPNN), extreme learning machine (ELM), and support vector regression (SVR) methods. Conclusion indicates that the LSTM wind noise prediction model not merely exhibits higher accuracy, but furthermore demonstrates superior generalization capabilities, thereby substantiating the superiority of this method.

Funder

National Key Research and Development project of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference57 articles.

1. Automotive aeroacoustics: an overview;Oettle;Proc. Inst. Mech. Eng. D,2017

2. Automotive sound quality–powertrain, road and wind noise;Cerrato;Sound Vib.,2009

3. Interior noise evaluation of electric vehicle: noise source contribution analysis;Shiozaki,2011

4. General aspects of vehicle aeroacoustics;Helfer,2005

5. Effects of on-road turbulence on automotive wind noise: comparing wind-tunnel and on-road tests;Peric,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3