Design, analysis and control of a novel tendon-driven magnetic resonance–guided robotic system for minimally invasive breast surgery

Author:

Jiang Shan1,Lou Jinlong1,Yang Zhiyong1,Dai Jiansheng12,Yu Yan3

Affiliation:

1. Centre for Advanced Mechanisms and Robotics, Tianjin University, Tianjin, China

2. Centre for Robotics Research, King’s College London, London, UK

3. Division of Medical Physics, Department of Radiation Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA

Abstract

Biopsy and brachytherapy for small core breast cancer are always difficult medical problems in the field of cancer treatment. This research mainly develops a magnetic resonance imaging–guided high-precision robotic system for breast puncture treatment. First, a 5-degree-of-freedom tendon-based surgical robotic system is introduced in detail. What follows are the kinematic analysis and dynamical modeling of the robotic system, where a mathematic dynamic model is established using the Lagrange method and a lumped parameter tendon model is used to identify the nonlinear gain of the tendon-sheath transmission system. Based on the dynamical models, an adaptive proportional–integral–derivative controller with friction compensation is proposed for accurate position control. Through simulations using different sinusoidal input signals, we observe that the sinusoidal tracking error at 1/2 π Hz is 0.41 mm. Finally, the experiments on tendon-sheath transmission and needle insertion performance are conducted, which show that the insertion precision is 0.68 mm in laboratory environment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3