Does microcalcification increase the risk of rupture?

Author:

Cilla Myriam12,Monterde David1,Peña Estefanía12,Martínez Miguel Á12

Affiliation:

1. Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain

2. CIBER-BBN-Centro de Investigación en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain

Abstract

Rupture of atherosclerotic plaque, which is related to maximal stress conditions in the plaque among others, is a major cause of mortality. More careful examination of stress distributions in atherosclerotic plaques reports that it could be due to local stress behaviors at critical sites caused by cap thinning, inflammation, macroscopic heterogeneity, and recently, the presence of microcalcifications. However, the role of microcalcifications is not yet fully understood, and most finite element models of blood vessels with atheroma plaque ignore the heterogeneity of the plaque constituents at the microscale. The goal of this work is to investigate the effect of microcalcifications on the stress field of an atheroma plaque vessel section. This is achieved by performing a parametric finite element study, assuming a plane strain hypothesis, of a coronary artery section with eccentric atheroma plaque and one microcalcification incorporated. The geometrical parameters used to define and design the idealized coronary plaque anatomy and the microcalcification were the fibrous cap thickness and the microcalcification ratio, angle and eccentricity. We could conclude that microcalcifications should be considered in the modeling of this kind of problems since they cause a significant alteration of the vulnerable risk by increasing the maximum maximal principal stress up to 32%, although this increase of stress is not uniform (12% on average). The obtained results show that the fibrous cap thickness, the microcalcification ratio and the microcalcification eccentricity, in combination with the microcalcification angle, appear to be the key morphological parameters that play a determinant role in the maximal principal stress and accordingly in the rupture risk of the plaque.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3