A Computational Fluid–Structure Interaction Study for Carotids With Different Atherosclerotic Plaques

Author:

Bennati Lorenzo1,Vergara Christian2,Domanin Maurizio3,Malloggi Chiara4,Bissacco Daniele5,Trimarchi Santi3,Silani Vincenzo6,Parati Gianfranco7,Casana Renato8

Affiliation:

1. Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona 37129, Italy

2. LABS, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta,” Politecnico di Milano, Milan 20133, Italy

3. Vascular Surgery Unit, IRCCS, Ospedale Maggiore Policlinico, Milan 20133, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan 20133, Italy

4. Laboratory of Research in Vascular Surgery, Istituto Auxologico Italiano, IRCCS, Milan 20133, Italy

5. Vascular Surgery Unit, IRCCS, Ospedale Maggiore Policlinico, Milan 20133, Italy

6. Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Ospedale San Luca, Istituto Auxologico Italiano, IRCCS, Milan 20133, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20133, Italy

7. Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale San Luca, Istituto Auxologico Italiano, IRCCS, Milan 20133, Italy; Department of Medicine and Surgery, Università di Milano-Bicocca, Monza 20900, Italy

8. Laboratory of Research in Vascular Surgery, Istituto Auxologico Italiano, IRCCS, Milan 20133, Italy; Department of Surgery, Istituto Auxologico Italiano, IRCCS, Milan 20133, Italy

Abstract

Abstract Atherosclerosis is a systemic disease that leads to accumulation of deposits, known as atherosclerotic plaques, within the walls of the carotids. In particular, three types of plaque can be distinguished: soft, fibrous, and calcific. Most of the computational studies who investigated the interplay between the plaque and the blood flow on patient-specific geometries used nonstandard medical images to directly delineate and segment the plaque and its components. However, these techniques are not so widely available in the clinical practice. In this context, the aim of our work was twofold: (i) to propose a new geometric tool that allowed to reconstruct a plausible plaque in the carotids from standard images and (ii) to perform three-dimensional (3D) fluid–structure interaction (FSI) simulations where we compared some fluid-dynamic and structural quantities among 15 patients characterized by different typologies of plaque. Our results highlighted that both the morphology and the mechanical properties of different plaque components play a crucial role in determining the vulnerability of the plaque.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3