Affiliation:
1. Department of Mechanical Engineering, University of the District of Columbia, Washington, DC, USA
2. Water Resource Research Institute, University of the District of Columbia, Washington, DC, USA
Abstract
In the current study, a hybrid mesoporous material infused with metallic oxide nanoparticles, MCM-48 with TiO2 nanoparticles, has been developed for potential application in water treatment. MCM-48 belongs to a family of mesoporous siliceous materials—M41S, in which MCM-48 has a unique three-dimensional cubic symmetry structure. Using this hybrid approach, it will allow the polluted water to pass through the strong yet high permeable structure of mesoporous material and to allow enough time for the pollutants to react with the metallic oxide nanoparticles infused on the porous structure so that the polluted water can be treated without introducing secondary pollutants. A modified hydrothermal method has been developed to synthesize three samples of this hybrid material with TiO2 nanoparticles of 15, 50, and 300 nm in diameter, respectively. The microstructures before and after the infusion of nanoparticles are characterized using scanning electron microscope and X-ray powder diffraction. Under the current study, the synthesized samples are tested for their capability of removing organic dye and trace metals. The results have shown that while all three hybrid materials have shown over 80% adsorption rate for organic dye, the sample synthesized using 300 nm TiO2 nanoparticle has shown the highest adsorption rate. Similarly, the highest adsorption rate for most trace metals tested here also occurs in the sample made with 300 nm TiO2 nanoparticle. Coincidently, the sample prepared with 300 nm TiO2 nanoparticle has a much larger internal surface area and smaller average pore size compared to the two other samples, which may lead to the higher adsorption rate of trace metals and organic dye tested here. This study has presented a hybrid mesoporous material that can be potentially used for pollutants removal in water treatment. Future study is needed to investigate how to reuse this hybrid mesoporous material and to obtain a further understanding of the mechanism affecting the micro structures of the hybrid material.
Funder
District of Columbia Water and Sewer Authority
Subject
Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献