Energy efficiency of a flat-plate solar collector using thermally treated graphene-based nanofluids: Experimental study

Author:

Alawi Omer A1ORCID,Kamar Haslinda Mohamed1,Mohammed Hussein A2,Mallah AR3,Hussein Omar A45

Affiliation:

1. Department of Thermofluids, School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia

2. School of Engineering, School of Molecular and Life Sciences, Edith Cowan University, Joondalup, WA, Australia

3. Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia

4. Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

5. Mechanical Engineering Department, College of Engineering, Tikrit University, Tikrit, Iraq

Abstract

A covalent functionalization approach was utilized for the preparation of highly dispersed pentaethylene glycol-thermally treated graphene-water as the absorbing material inside a flat-plate solar collector. Four mass fractions of nanofluids were prepared (0.025, 0.05, 0.075, and 0.1 wt% pentaethylene glycol-thermally treated graphene-water). Graphene nanoparticles were characterized by energy dispersive X-ray analysis with a scanning electron microscope. Measurements of the thermophysical properties were subsequently carried out for the nanosuspensions. The raw investigation data were collected from an indoor flat-plate solar collector test setup. The experimental procedure included different sets of variables such as input temperatures of 303, 313, and 323 K; fluid mass flow rate of 0.00833, 0.01667, and 0.025 kg s−1; and heat flow density of 500, 750, and 1000 W m−2. The thermophysical tests of pentaethylene glycol-thermally treated graphene-water nanofluids showed a proportional increase against weight concentrations, while the specific heat power was reduced. The tests showed an increment in energy efficiency by increasing the fluid mass flow rate and heat input. By comparison, the thermal efficiency decreased with the increasing temperature of the fluid supply. Relative to the base fluid, the energy efficiency of pentaethylene glycol-thermally treated graphene/water-based flat-plate solar collector increased to 10.6%, 11%, and 13.1% at the three fluid mass flow rates. In conclusion, an exponential form was used to derive the thermal effectiveness of flat-plate solar collector based on the experimental data.

Funder

Universiti Teknologi Malaysia

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3