Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still

Author:

Goshayeshi Hamid Reza,Safaei Mohammad Reza

Abstract

Purpose Solar-driven water desalination technologies are rapidly developing with various links to other renewable sources. However, the efficiency of such systems severely depends on the design parameters. This paper presents results from an investigation on the effect of the glass cover inclination angle on the performance of two stepped solar still geometries (flat and convex) and the amount of produced distilled water. Design Methodology Approach Studied inclination angles of 25°, 27.5°, 30°, 32.5° and 35° were chosen, while other design parameters were fixed. Findings The investigation showed that the unit with the convex absorber plate had higher average water daily production rate, compared to the output of the flat absorber plate unit. The results also depicted that the inclination angle of the still has a noticeable effect on the performance of solar stills. The value of the critical angle is 32.5°, and the higher inclination angle results in less heat transfer coefficient. This value can be used for design purposes and erases the typical assumption to use lower angles to optimize the productivity of the still. Practical Implications Finally, obtained data were used to correlate the Nusselt number for the flat and convex surfaces with different inclination angles of the glass cover. Originality Value The outcome of this investigation may find applications to develop highly efficient solar stills to secure more drinkable water in warm, dry lands.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference48 articles.

1. The effects of design parameters on productivity performance of a solar still for seawater desalination: a review;Desalination,2016

2. Parameters affecting the performance of a low cost solar still;Applied Energy,2014

3. Overview of global water challenges and solutions,2015

4. Experimental investigation on the performance of solar still augmented with pin-finned wick;Desalination,2016

5. A review of efficient high productivity solar stills;Renewable and Sustainable Energy Reviews,2019

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3