Effect of ten different physical parameters on solar still productivity: Theoretical modeling

Author:

Omara Adil A. M.1ORCID,Mohamed Omer Elfarouk E.1,Mohammedali Abubaker A. M.2ORCID,Ahmed Mustafa Ahmed Khogley3

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering University of Khartoum Khartoum Sudan

2. Department of Mechanical Engineering, Faculty of Engineering Sudan University of Science and Technology Khartoum Sudan

3. Department of Mechanical Engineering, Faculty of Engineering Omdurman Islamic University Khartoum Sudan

Abstract

AbstractSolar distillation using solar stills is widely recognized as a clean and cost‐effective method for producing freshwater. However, due to its straightforward design, solar still performance is greatly influenced by various physical characteristics. Many researches have evaluated solar still parameters, while only a few articles have concerned physical ones. Therefore, this article aims to investigate the effect of different physical parameters on solar still productivity through thermal modeling. The theoretical results were validated with those of a previous experimental model, showing a good agreement with each other. The results reveal that daily productivity experiences significant improvement with an increase in plate emissivity or insulation thickness. Conversely, an increase in water mass, glass absorptivity or insulation thermal conductivity leads to a substantial reduction in productivity. Notably, water transmissivity and plate absorptivity do not affect productivity. Modest enhancements in productivity can be achieved by reducing the effective emissivity between water and glass. While the initial temperature of water has a minor impact on productivity at low water mass, it exhibits a substantial improvement effect at high water mass. These results can be a good guidance for the designers and manufacturers to develop more efficient designs that maximize the production of clean water.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3