Influence of mechanical properties of polypropylene/low-density polyethylene nanocomposites

Author:

Su Bei1,Zhou Ying-Guo1ORCID,Wu Hai-Hong2

Affiliation:

1. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China

2. School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, Henan, People’s Republic of China

Abstract

The mechanical blending of polypropylene and low-density polyethylene is an economical and simple method for producing new polymeric materials for specific applications. However, the reduction in mechanical properties of the blend is one of its main shortcomings. In this study, a filler masterbatch including nano-silicon dioxide, compatibilizer, lubricant agent, and antioxidant agent was prepared, and polypropylene–low-density polyethylene composite parts with different content of filler masterbatch were fabricated and tested for mechanical properties at two tensile test speeds. Also, to investigate the underlying mechanism of the mechanical properties improvement, the tested samples were carefully analyzed and compared and further characterized by scanning electron microscopy and differential scanning calorimetry. The results indicate that the mechanical properties, including tensile strength, moduli, and elongation, can be all drastically improved simultaneously with the addition of the filler masterbatch. The results also suggest that the compatibility of the two phases increases with the increase in the filler masterbatch, and the crystal size decreases and distribution uniforms owing to the addition of the filler masterbatch. Furthermore, it was also found that there is a close relationship between the mechanical properties and morphological structures, which are improved by the existence of the filler masterbatch.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3