Improvement of structure and quality of nanoscale multilayered composite coatings, deposited by filtered cathodic vacuum arc deposition method

Author:

Vereschaka Alexey A1,Vereschaka Anatoly S1,Batako Andre DL2,Mokritskii Boris J3,Aksenenko Anatoliy Y1,Sitnikov Nikolay N45

Affiliation:

1. Moscow State Technological University Stankin, Moskva, Russia

2. Liverpool John Moores University, Liverpool, UK

3. Komsomolsk-na-Amure State Technical University, Khabarovsk Krai, Russia

4. Federal State Unitary Enterprise “Keldysh Research Center,” Moscow, Russia

5. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moskva, Russia

Abstract

This article studies the specific features of cathode vacuum arc deposition of coatings used in the production of cutting tools. The detailed analysis of the major drawbacks of arc-Physical Vapour Deposition (PVD) methods has contributed to the development of the processes of filtered cathodic vacuum arc deposition to form nanoscale multilayered composite coatings of increased efficiency. This is achieved through the formation of nanostructure, increase in strength of adhesion of coating to substrate up to 20%, and reduction of such dangerous coating surface defects as macro- and microdroplets up to 80%. This article presents the results of the studies of various properties of developed nanoscale multilayered composite coating. The certification tests of carbide tool equipped with cutting inserts with developed nanoscale multilayered composite coating compositions in longitudinal turning (continuous cutting) and end symmetric milling, and intermittent cutting of steel C45 and hard-to-cut nickel alloy of NiCr20TiAl showed advantages of tool with nanoscale multilayered composite coating as compared to the tool without coating. The lifetime of the carbide inserts with developed NMCC based on the system of Ti–TiN–(NbZrTiCr)N (filtered cathodic vacuum arc deposition) was increased up to 5–6 times in comparison with the control tools without coatings and up to 1.5–2.0 times in comparison with nanoscale multilayered composite coating based on the system of Ti–TiN–(NbZrTiCr)N (standard arc-PVD technology).

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3