Machine Learning Can Predict Total Death After Radiofrequency Ablation in Liver Cancer Patients

Author:

Tong Jianhua1,Liu Panmiao1,Ji Muhuo1,Wang Ying1,Xue Qiong1,Yang Jian-Jun1,Zhou Cheng-Mao1ORCID

Affiliation:

1. Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Abstract

Objective: Over 1 million new cases of hepatocellular carcinoma (HCC) are diagnosed worldwide every year. Its prognosis remains poor, and the 5-year survival rate in all disease stages is estimated to be between 10% and 20%. Radiofrequency ablation (RFA) has become an important local treatment for liver cancer, and machine learning (ML) can provide many shortcuts for liver cancer medical research. Therefore, we explore the role of ML in predicting the total mortality of liver cancer patients undergoing RFA. Methods: This study is a secondary analysis of public database data from 578 liver cancer patients. We used Python for ML to establish the prognosis model. Results: The results showed that the 5 most important factors were platelet count (PLT), Alpha-fetoprotein (AFP), age, tumor size, and total bilirubin, respectively. Results of the total death model for liver cancer patients in test group: among the 5 algorithm models, the highest accuracy rate was that of gbm (0.681), followed by the Logistic algorithm (0.672); among the 5 algorithms, area under the curve (AUC) values, from high to low, were Logistic (0.738), DecisionTree (0.723), gbm (0.717), GradientBoosting (0.714), and Forest (0.693); Among the 5 algorithms, gbm had the highest precision rate (0.721), followed by the Logistic algorithm (0.714). Among the 5 algorithms, DecisionTree had the highest recall rate (0.642), followed by the GradientBoosting algorithm (0.571). Conclusion: Machine learning can predict total death after RFA in liver cancer patients. Therefore, ML research has great potential for both personalized treatment and prognosis of liver cancer.

Publisher

SAGE Publications

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3