Can Machine Learning Predict Favorable Outcome After Radiofrequency Ablation of Hepatocellular Carcinoma?

Author:

Hamed Amr A.1,Muhammed Amr2ORCID,Abdelbary Ebtsam A.M.3,Elsharkawy Ramy M.1,Ali Moustafa A.1

Affiliation:

1. Tropical Medicine and Gastroenterology, Sohag University Hospital, Sohag, Egypt

2. Clinical Oncology Department, Sohag University Hospital, Sohag, Egypt

3. Diagnostic and Interventional Radiology Department, Sohag University Hospital, Sohag, Egypt

Abstract

PURPOSE The standard practice for limited-stage hepatocellular carcinoma (HCC) is the resection or the use of local ablative techniques, such as radiofrequency ablation (RFA). The outcome after RFA depends on a complex interaction between the patient's general condition, hepatic function, and disease stage. In this study, we aimed to explore using a machine learning model to predict the response. PATIENTS AND METHODS A retrospective study was conducted for patients with RFA for a localized HCC between 2018 and 2022. The collected clinical, radiologic, and laboratory data were explored using Python and XGBoost. They were split into a training set (70%) and a validation set (30%). The primary end point of this study was to predict the probability of achieving favorable outcomes 12 months after RFA. Favorable outcomes were defined as the patient was alive and HCC was controlled. RESULTS One hundred and eleven patients were eligible for the study. Males were 78 (70.3%) with a median age of 57 (range of 43-81) years. Favorable outcome was seen in 62 (55.9%) of the patients. The 1-year survival rate and control rate were 94.6%, and 61.3%, respectively. The final model harbored an accuracy and an AUC of 90.6% and 0.95, respectively, for the training set, while they were 78.9% and 0.80, respectively, for the validation set. CONCLUSION Machine learning can be a predictive tool for the outcome after RFA in patients with HCC. Further validation by a larger study is necessary.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3