Exome Sequencing of Fresh-frozen or Formalin-fixed Paraffin-embedded B6C3F1/N Mouse Hepatocellular Carcinomas Arising Either Spontaneously or due to Chronic Chemical Exposure

Author:

Auerbach Scott S.1,Xu Miaofei1,Merrick B. Alex1,Hoenerhoff Mark J.12,Phadke Dhiral3,Taxman Debra J.3,Shah Ruchir3,Hong Hue-Hua L.1,Ton Thai-Vu1,Kovi Ramesh C.14,Sills Robert C.1,Pandiri Arun R.1

Affiliation:

1. Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, USA

2. Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA

3. Sciome LLC, Research Triangle Park, North Carolina, USA

4. Experimental Pathology Laboratories Inc., Research Triangle Park, North Carolina, USA

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide; however, the mutational properties of HCC-associated carcinogens remain largely uncharacterized. We hypothesized that mechanisms underlying chemical-induced HCC can be characterized by evaluating the mutational spectra of these tumors. To test this hypothesis, we performed exome sequencing of B6C3F1/N HCCs that arose either spontaneously in vehicle controls ( n = 3) or due to chronic exposure to gingko biloba extract (GBE; n = 4) or methyleugenol (MEG; n = 3). Most archived tumor samples are available as formalin-fixed paraffin-embedded (FFPE) blocks, rather than fresh-frozen (FF) samples; hence, exome sequencing from paired FF and FFPE samples was compared. FF and FFPE samples showed 63% to 70% mutation concordance. Multiple known (e.g., Ctnnb1T41A, BrafV637E) and novel (e.g., Erbb4C559S, Card10A700V, and Klf11P358L) mutations in cancer-related genes were identified. The overall mutational burden was greater for MEG than for GBE or spontaneous HCC samples. To characterize the mutagenic mechanisms, we analyzed the mutational spectra in the HCCs according to their trinucleotide motifs. The MEG tumors clustered closest to Catalogue of Somatic Mutations in Cancer signatures 4 and 24, which are, respectively, associated with benzo(a)pyrene- and aflatoxin-induced HCCs in humans. These results establish a novel approach for classifying liver carcinogens and understanding the mechanisms of hepatocellular carcinogenesis.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3