Author:
Hou Jing,Mori Kiwako,Ikeda Shin-ichi,Jeong Heonuk,Torii Hidemasa,Negishi Kazuno,Kurihara Toshihide,Tsubota Kazuo
Abstract
AbstractMyopia is becoming more common across the world, necessitating the development of preventive methods. We investigated the activity of early growth response 1 (EGR-1) protein and discovered that Ginkgo biloba extracts (GBEs) activated EGR-1 in vitro. In vivo, C57BL/6 J mice were fed either normal or 0.0667% GBEs (200 mg/kg) mixed chow (n = 6 each), and myopia was induced with − 30 diopter (D) lenses from 3 to 6 weeks of age. Refraction and axial length were measured by an infrared photorefractor and an SD-OCT system, respectively. In lens-induced myopia mice, oral GBEs significantly improved refractive errors (− 9.92 ± 1.53 D vs. − 1.67 ± 3.51 D, p < 0.001) and axial elongation (0.22 ± 0.02 mm vs. 0.19 ± 0.02 mm, p < 0.05). To confirm the mechanism of GBEs in preventing myopia progression, the 3-week-old mice were divided into normally fed with either myopic-induced or non-myopic-induced groups and GBEs fed with either myopic-induced or non-myopic-induced groups (n = 10 each). Choroidal blood perfusion was measured with optical coherence tomography angiography (OCTA). In both non-myopic induced groups, compared to normal chow, oral GBEs significantly improved choroidal blood perfusion (8.48 ± 15.75%Area vs. 21.74 ± 10.54%Area, p < 0.05) and expression of Egr-1 and endothelial nitric oxide synthase (eNOS) in the choroid. In both myopic-induced groups, compared to normal chow, oral GBEs also improved choroidal blood perfusion (− 9.82 ± 9.47%Area vs. 2.29 ± 11.84%Area, p < 0.05) and was positively correlated with the change in choroidal thickness. These findings suggest that GBEs may inhibit the progression of myopia by improving choroidal blood perfusion.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献