Affiliation:
1. Drug Safety Evaluation, Allergan, Inc., Irvine, California,
USA, vickers_alison@allergan.com
Abstract
Impairment of liver mitochondrial β-oxidation is an important mechanism of drug-induced liver injury. Four inhibitors of fatty acid oxidation were compared in short-term rat in vivo studies in which the rats were administered one or four doses. The hepatocellular vacuolation represented ultrastructural mitochondrial changes. Urine nuclear magnetic resonance (NMR) spectroscopy revealed that both FOX988 and SDZ51-641 induced a persistent dicarboxylic aciduria, suggesting an inhibition of mitochondrial β-oxidation and incomplete fatty acid metabolism. Etomoxir caused minimal mitochondrial ultrastructural changes and induced only transient dicarboxylic aciduria. CPI975 served as a negative control, in that there were no significant perturbations to the mitochondrial ultrastructural morphology or in the urine NMR composition; however, compound exposure was confirmed by the up-regulation of liver gene expression compared to vehicle control. The liver gene expression changes that were altered by the compounds were indicative of mitochondria, general and oxidative stress, and peroxisomal enzymes involved in β-oxidation, suggestive of a compensatory response to the inhibition in the mitochondria. In addition, both FOX988 and SDZ51-641 up-regulated ribosomal genes associated with apoptosis, as well as p53 pathways linked with apoptosis. In summary, metabonomics and liver gene expression provided mechanistic information on mitochondrial dysfunction and impaired fatty acid oxidation to further define the clinical pathology and histopathology findings of hepatotoxicity.
Subject
Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献