Nanocomposites containing polyvinyl alcohol and reinforced carbon-based nanofiller

Author:

Hajeeassa Khdejah S1,Hussein Mahmoud A12ORCID,Anwar Yasir3,Tashkandi Nada Y1,Al-amshany Zahra M1

Affiliation:

1. Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia

2. Polymer Chemistry Lab. 122, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt

3. Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

A new class of biologically active polymer nanocomposites based on polyvinyl alcohol and reinforced mixed graphene/carbon nanotube as carbon-based nanofillers with a general abbreviation (polyvinyl alcohol/mixed graphene–carbon nanotubes) has been successfully synthesized by an efficient solution mixing method with the help of ultrasonic radiation. Mixed graphene and carbon nanotubes ratio has been prepared (50%:50%) wt by wt. Different loading of mixed graphene–carbon nanotubes (2, 5, 10, 15, and 20 wt%) were added to the host polyvinyl alcohol polymer. In this study, polyvinyl alcohol/mixed graphene–carbon nanotubesa–e nanocomposites were characterized and analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, and the thermal stability was measured by thermogravimetric analysis and derivative thermal gravimetric. Fourier transform infrared and X-ray diffraction spectra proved the addition of mixed graphene–carbon nanotubes into polyvinyl alcohol matrix. X-ray diffraction patterns for these nanocomposites showed 2 θ = 19.35° and 40° due to the crystal nature of polyvinyl alcohol in addition to 2 θ = 26.5° which attributed to the graphite plane of carbon-based nanofillers. Thermal stability of polyvinyl alcohol/mixed graphene–carbon nanotubes nanocomposites was enhanced comparing with pure polyvinyl alcohol. The main degradation step ranged between 360° and 450°C. Moreover, maximum composite degradation temperature has appeared at range from 285°C to 267°C and final composite degradation temperature (FCDT) displayed at a temperature range of 469–491°C. Antibacterial property of polyvinyl alcohol/mixed graphene–carbon nanotubesa–e nanocomposites were tested against Escherichia coli bacteria using the colony forming units technique. Results showed an improvement of antibacterial property. The rate percentages of polyvinyl alcohol/mixed graphene–carbon nanotubesb, polyvinyl alcohol/mixed graphene–carbon nanotubesc, and polyvinyl alcohol/mixed graphene–carbon nanotubesd nanocomposites after 24 h are 6%, 5%, and 7% respectively. However, polyvinyl alcohol/mixed graphene–carbon nanotubese nanocomposite showed hyperactivity, where its reduction percentage remarkably raised up to 100% which is the highest inhibition rate percentage. In addition, polyvinyl alcohol and polyvinyl alcohol/graphene–carbon nanotubesa–d showed colony forming units values/ml 70 × 106 and 65 ± 2 × 106 after 12 h. After 24 h, the colony forming units values/ml were in the range of 86 × 106–95 × 106.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3