Low Velocity Impact and Creep-Strain Behaviour of Vinyl Ester Matrix Nanocomposites Based on Layered Silicate

Author:

Alateyah A. I.12,Dhakal H. N.2,Zhang Z. Y.2,Aldousiri B.3

Affiliation:

1. Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

2. Advanced Polymer and Composites (APC) Research Group, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

3. Department of Power and Desalination Plants, Ministry of Electricity, South Surra, 13001 Kuwait, Kuwait

Abstract

The impact properties of neat vinyl ester and the nanocomposites were performed using a low velocity impact testing. The addition of layered silicate into the polymer matrix shows that an optimum range of nanoclay reinforcement in the vinyl ester matrix can produce enhanced load bearing and energy absorption capability compared to the neat matrix. In addition, the amount of microvoids in the nanocomposites structure influences the overall properties. Likewise, the influence of the clay addition into the neat polymer on the creep relaxation behaviour at 25°C and 60°C was studied. In both cases, the presence of the layered silicate remarkably improved the creep behaviour. The improvement of these properties can be assigned to the stiff fillers and the configurational linkage between the polymer and the layered silicate which are supported by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterisations by showing a distinct change in surface morphology associated with improved impact toughness and creep response.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3