Development and characterization of Al2024/magnesium oxide/CNTs/ hybrid composites via stir casting method

Author:

Kurt Halil Ibrahim1ORCID,Ergul Engin2,Basyigit Aziz Baris3,Oduncuoglu Murat4,Yilmaz Necip Fazil5

Affiliation:

1. Department of Aerospace Engineering, Faculty of Aeronautics and Astronautics, Samsun University, Samsun, Canik, Turkey

2. Izmir Vocational School, Dokuz Eylul University, Izmir, Turkey

3. Department of Metallurgical and Materials Engineering, Engineering Faculty, Kırıkkale University, Kırıkkale, Turkey

4. Department of Physics, Yildiz Technical University, Istanbul, Turkey

5. Department of Mechanical Engineering, Engineering Faculty, Gaziantep University, Gaziantep, Turkey

Abstract

In this research, the aluminum (Al2024) matrix composites are reinforced with nano magnesium oxide (MgO) and multi-walled carbon nanotubes (MWCNTs). The aim of Al2024 alloy reinforced with MgO and MWCNTs is to reveal the effects of the reinforcement particle ratio on the microstructure and mechanical properties of the hybrid composites, to find the optimum hybrid ratio, and to form a stronger hybrid composite. The composites with the different hybrid ratios are produced via stir casting method. The theoretical and measured densities and porosity content of the composites are studied. The microstructure and fracture surface of the composites are examined by optical microscopy, scanning electron microscopy (SEM), and electron dispersive spectrum (EDS). The hardness, compression, and tensile properties of the composites are studied in this work. Results indicated that the hardness of the aluminum (Al) matrix composites (AMCs) is significantly improved after the reinforcement with MgO and carbon nanotube (CNT), and also heat treatment of T6. The stress–strain curve of the composites is tested by a material testing machine. The maximum tensile and compression strengths are obtained at Al2024-0.2 wt.% (MgO 50% + CNT 50%) the composite as 226 MPa and 684 MPa, respectively .The hardness, compression, and tensile strengths of the hybrid composites are higher than 1.51, 1.39, and 1.31 than that of the base metal. After heat treatment of T6, the maximum harness, compression, and tensile strengths are obtained by 102 HB, 730 MPa, and 277 MPa, respectively, which are 1.82, 1.49, and 1.61 times higher hardness than that that of the base Al2024 alloy. The main strengthening mechanism of nano-MgO particles and MWCNTs-reinforced Al2024/MgO/CNTs composites is observed by the precipitation strengthening mechanism.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3