Optimization of squeeze casting parameters of hybrid aluminium matrix composite using Taguchi approach

Author:

Arulraj M1ORCID,Palani PK2,Sowrirajan M1

Affiliation:

1. Department of Mechanical Engineering, Coimbatore Institute of Engineering and Technology, Coimbatore, India

2. Department of Mechanical Engineering, Government College of Technology, Coimbatore, India

Abstract

Squeeze casting is one of the simplest processes of manufacturing of composite materials and it attains higher advantages of low material processing cost, easy handling of material, size, design and good stability of matrix structure. LM24 aluminium alloy reinforced with silicon carbide (SiC) and coconut shell ash (CSA) were used to prepare the composite. LM24 alloy had wide engineering applications, wherein the addition of SiC enhances the wear resistance and CSA particles offer significant technical and economic benefits. In the present study, the composite samples were prepared based on Taguchi experimental conditions L16 (4-levels and 5- parameters) through squeeze casting method. From the experimental results, percentage of reinforcement and squeeze pressure were most influential parameters on impact strength. The optimum casting condition was obtained by using Taguchi optimization. From microstructural study, applying high level of squeeze pressure improved the uniform dispersion, good bonding between the matrix and reinforcement. Also, 25% of impact strength was improved the composite using Taguchi optimum conditions compared than conventional alloys. Higher squeeze pressure seen to have refined dendritic structure with uniform distribution of reinforcement materials in the aluminium matrix.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3