Parametric Optimizing Green Sand-Casting Process Parameters using hybrid Taguchi Grey Relational Analyses and Principal Component Analyses

Author:

J. Vora Manish,

Abstract

The Green Sand-casting technique is a very ancient method of casting that has many different uses. The increased rate of errors and rejection in this process is a key drawback that reduces output and profits. It’s challenging to develop a good link between the many different parameters and defects since the process is so complicated. This article describes a hybrid approach to find the co-relation for sand casting process’s variables. This approach mixes the Taguchi method (TM) with Grey Relational Analysis (GRA) paired with Principal Component Analysis (PCA). Moisture content, Permeability, Loss of Ignition, Pouring Time & Pouring Temperature selected as input parameters while types of defects (Shrinkage, Blow holes, Cracks, Porosity) as responses for proposed study. The L27 OA from Taguchi is used to plan the tests. TM implemented to analyse individual responses. GRA is applied to find optimal solutions for a set of replies, whereas PCA is used to determine how much weight each response should be given. Using proposed methodology, 4% moisture content, 160% permeability, 5% loss of ignition, 60 seconds of pouring time, and 1400°C found as optimum set of parameters. The findings demonstrate that the hybrid approach, which makes use of both a cost-effective and efficient experimental design strategy, was successful in resolving the complexity trade-off experienced throughout the judgment process of multi-response optimization.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3