Distributed Drive Electric Vehicle Sideslip Angle Estimation Based on the AVOA-MCSCKF Algorithm

Author:

Chen Qiping1ORCID,Yu Binghao1,Pang Hongyu1,Zhong Chengping2,You Daoliang2,Jiang Zhiqiang3

Affiliation:

1. Key Laboratory of Conveyance and Equipment Ministry of Education, East China Jiaotong University, Nanchang, China

2. Jiangling Motor Co., Ltd., Nanchang, China

3. Jiangxi Vocational and Technical College of Communications, Nanchang, China

Abstract

The accurate acquisition of information regarding the state of a vehicle's driving is essential for the implementation of active safety control measures in vehicles. To tackle the challenge of accurately measuring the sideslip angle in distributed electric vehicles, this study proposes an optimized maximum correntropy square-root cubature Kalman filter based on African vulture optimization algorithm (AVOA-MCSCKF). This method aims to provide accurate estimation of the sideslip angle. The real-time estimation of the total vehicle mass is conducted through the application of forgetting factor recursive least squares method. Additionally, the African vulture algorithm is utilized to adaptively adjust MCSCKF. This adjustment aims to mitigate estimation inaccuracies stemming from the uncertain nature of the noise covariance matrix, ultimately leading to a more accurate estimation of the sideslip angle. In the collaborative simulation environment of Carsim/Simulink, the algorithm's accuracy and robustness are validated across various operational scenarios. The research findings indicate that AVOA-MCSCKF algorithm enhances the accuracy of sideslip angle estimation by a minimum of 51.8% when compared to both the standard covariance Kalman filter and square-root cubature Kalman filter filter. This approach effectively addresses the challenging estimation issue of the sideslip angle in distributed drive electric vehicles operating under complex conditions, thereby improving the vehicle's active safety.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3