A novel deep learning model for fault diagnosis of rolling-element bearing based on convolution neural network and recurrent neural network

Author:

Song Xudong1,Lyu Xinran2ORCID,Sun Shaocong2ORCID,Li Changxian3

Affiliation:

1. Computer and Communication Engineering Institute, Dalian Jiaotong University, Dalian, Liaoning, China

2. Software Technology Institute, Dalian Jiaotong University, Dalian, Liaoning, China

3. School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian, Liaoning, China

Abstract

Rolling bearings are critical components that are incredibly prone to failure in the operation of mechanical equipment. Due to the complexity of the actual working conditions, multiple types, positions and scales of bearings are problematic to accurately and completely classify using conventional classification methods. In this study, a novel end-to-end deep learning framework consisting of a one-dimensional convolutional neural network (1D-CNN) and a module fused by long short-term memory (LSTM) and gated recurrent unit (GRU) is proposed to diagnose bearing failures, thus solving the problem of the poor accuracy of traditional fault identification. First, 1D-CNN is used to extract local features from bearing data thanks to its excellent local feature extraction capabilities. Second, global features are extracted from bearing data using LSTM and GRU, and classification is performed with Softmax. Finally, the proposed model is evaluated using Case Western Reserve University and the University of Cincinnati data, with accuracy rates of 99.99% and 99.83%, respectively. The experimental results indicate that the proposed model has good feasibility and performance.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Liaoning Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3