Improvement in joint efficiency with high productivity and narrow weld formation in friction stir welding

Author:

Khan Noor Zaman1ORCID,Siddiquee Arshad Noor2ORCID,Khan Zahid A2ORCID,Badruddin Irfan Anjum3ORCID,Kamangar Sarfaraz3,Maqbool Annayath1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Srinagar, India

2. Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), India

3. Mechanical Engineering Department, College of Engineering, King Khalid University, Kingdom of Saudi Arabia

Abstract

High productivity, excellent joint strength and small weld bead make friction stir welding an emerging joining technique to join difficult to weld dissimilar aluminum alloys. Effect of rotational speed, traverse speed and shoulder diameter on the joint strength and elongation of the friction stir welded dissimilar aluminum alloys (AA7475-AA2219) is investigated. In addition, parameters are optimized to obtain joint with narrow weld bead and high joint efficiency using the entropy-weighted technique for order of preference by similarity to ideal solution method. Nine experiments are performed as per the L9 orthogonal array and mechanical properties of the welded joints are measured. Results of the study reveal that optimum values of ultimate tensile strength and percentage elongation are obtained at a rotational speed of 710 rev/min, welding speed of 250 mm/min and shoulder diameter of 10 mm resulting in good joint strength, high productivity and narrow weld bead. From the selected process parameter range, tool shoulder diameter is found to be the most significant parameter. The findings of the present study are discussed in light of the friction stir welding process mechanism, available literature, mechanical testing, microstructure and fractography.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3