Exploring Casting Defects of AA7075 Alloy in the Gravity Die Casting Simulation of an IC Engine Block

Author:

Aneesh T.1ORCID,Pawan K.1,Mohan L.1,Hari Krishna P.1ORCID,Hotta Tapano Kumar1ORCID,Mohanty Chinmaya Prasad1ORCID,Gupta Manoj2

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India

2. Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract

The present work aims to investigate the different casting defects that arose during the gravity die casting process of an IC engine block made of AA 7075 alloy and also highlights the feasible solutions to eradicate those defects. The minimization of the casting defects is a very crucial task in an IC engine block. Experimental studies which are generally performed to reduce the casting defects are proven to be strenuous, costly, and time-consuming. To counter this, a thermal simulation model is proposed in the present study to identify the effect of the pouring temperature, mould temperature, and the number of chillers on the various casting defects such as cold shuts, air entrapment, mould erosion, and microporosity. A detailed parametric study is conducted on the proposed model to evaluate the outcomes of important process variables on the resulting casting defects. The simulation results predict, at pouring temperature of 963 K, mould temperature of 293.15 K and with the use of 2 chillers defect-free IC engine blocks can be casted. The optimum result obtained by the proposed model is validated by conducting a confirmative test predicting an average error of 6.98%. The proposed model is effective enough in getting rid of the numerous casting defects which cannot be identified using the traditional methods; thus increasing productivity. This can be used as an economical time-saving substitute to the experimental methods during casting of various engine parts.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3