Dynamics of multiple slip boundaries effect on MHD Casson-Williamson double-diffusive nanofluid flow past an inclined magnetic stretching sheet

Author:

Humane Pooja P.1ORCID,Patil Vishwambhar S.2ORCID,Patil Amar B.1ORCID,Shamshuddin MD.3ORCID,Rajput Govind R.4

Affiliation:

1. Department of Mathematics, Shivaji University Kolhapur-416004, India

2. Department of Mathematics, Govt. College of Engineering, Karad, India

3. Department of Mathematics, Vaagdevi College of Engineering (Autonomous), Warangal, Telangana, India

4. Department of Applied Sciences and Humanities, SVKM’s, NMIMS, Mukesh Patel School of Technology Management and Engineering, Shirpur campus, Shirpur, India

Abstract

The present research paper highlights the effect of multiple slips and inclined magnetic fields on chemically reacting Casson-Williamson with Buongiorno modeled nanofluid flow past a permeable stretching surface. Considered physical factors associated with heat transfer are viscous dissipation, Joule's heating, radiation, and double diffusion effects. The ordinary differential equations (ODEs) are formulated from governing system of highly nonlinear Partial differential equations (PDEs) by a suitable implementation of similarity invariants. The numerical results are obtained by programming the resulting equations in MATLAB software via Runge-Kutta (R-K) fourth-order technique along with the shooting scheme. The graphical illustration provides the behavior of velocity, temperature, and concentration on different non-dimensional parameters. It is worth to notice the slip parameters are greatly analogs with various physical properties of the flow field. The effect of a magnetic parameter ([Formula: see text]), Casson parameter ([Formula: see text]), Williamson parameter ([Formula: see text]), velocity slip effect ([Formula: see text]), and the inclination ([Formula: see text]) on axial velocity are shown graphically. The outstanding agreement is observed after a comparison of numerical outcomes with previously published work. The applied magnetic field and thermal radiation insert more energy into the system which improves the thermal boundary layer.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3