Insight into the dynamics of bioconvective Walter’s-B nanofluid flow subjected to Cattaneo–Christov heat flux and activation energy

Author:

Rashid Amjid1ORCID,Ali Liaqat23ORCID,Madassar Naeem4ORCID,Tahir Qaisar Nadeem4ORCID

Affiliation:

1. Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan

2. School of Sciences, Xi’an Technological University, Xi’an 710021, China

3. Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia

4. Department of Mathematics, Mirpur University of Science and Technology, Mirpur, Pakistan

Abstract

In order to study the implementation of the generalized magnetohydrodynamic (MHD) bioconvective aspects of the Walter’s-B fluid flows over a convectively heated stretched sheet in the presence of activation energy and numerous boundary conditions, the non-homogeneous nanofluid flow model is used. Here, the nonlinear differential equations illustrating the current nanofluid flow model of non-Newtonian fluid explicitly include the concentration of both motile microbes and solid nanoparticles. Furthermore, the associated temperature, impact of thermal radiation and the Cattaneo–Christov heat flux model are discussed. The similarity transformations are formally displayed to transfer the consequential reduction in the mathematical complexity of the existing physical situation by converting partial differential equations (PDEs) into a nonlinear associated framework of ordinary differential equations (ODEs). Furthermore, the homotopy analysis method (HAM) through the MATLAB tool is used to numerically solve the dimensionless similarity equations. The results are extremely well demonstrated. In this manner, the significant engineering procedures are more accurately and entirely estimated before being reported. The results of the fixed physical factors of velocity, temperature, concentration, and microbe concentration profiles are effectively demonstrated through multiple types of illustrations and comprehensive explanations. The principal assumption is that the greater significance of the bioconvection Lewis and Peclet numbers can lead to a drop in the microbe concentration profile. It is observed that the concentration profile is reduced with the greater value of the concentration relaxation parameter.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3