Galerkin finite element analysis for peristaltic flow of micropolar fluid through porous soaked inclined tube independent of wavelength

Author:

Ahmed B.1,Khan S. U.2,Ahmad S.1,Shehzad S. A.2ORCID,Chammam Wathek3

Affiliation:

1. Department of Mathematics and Statistics, The University of Lahore, Pakistan

2. Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan

3. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia

Abstract

In this novel numerical investigation, the application of well-renowned numerical technique known as Galerkin finite element method on full form of Navier-Stokes equations presented peristaltic flow of non-Newtonian fluid confined by a uniformly saturated porous medium. The rheological aspects of non-Newtonian material are discussed by considering micropolar fluid. The flow model consists of system of nonlinear partial differential equations with mixed boundary condition. The flow also experienced an externally applied magnetic field. The effects of inertial forces and the results independent of wavelength are obtained by dropping the presumptions of lubrication theory in modelling the governing equations. The numerical solution for formulated problem in terms of partial differential expressions is worked out via Galerkin finite technique in view of six nodal triangular elements. The enhancement in the inertial forces gives impressive pressure enhancement against wavelength while opposed the fluid flow in the vicinity of peristaltic walls of the tube but supported the fluid flow in the central region of the tube. The present results are also compared with the available results after applying lubrication theory and found in reliable agreement.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3