Chemically reactive MHD peristaltic flow of Jeffrey nanofluid via a vertical porous conduit with complaint walls under the effects of bioconvection and double diffusion

Author:

Ajithkumar M.1,Lakshminarayana P.1

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India

Abstract

Inspired by significant physiological applications of peristaltic transport, a mathematical model for the peristaltic pumping of a Jeffrey nanofluid containing gyrotactic microorganisms through a flexible and vertical symmetric channel is investigated, along with the effects of thermal radiation, heat source/sink, chemical reaction, porous medium and Hall current. Swimming microorganisms in a model of non-Newtonian fluid has several biological and ecological benefits, including in the pharmaceutical industry, biofertilizers, biofuel technology, biosensors, etc. With these presumptions in mind, a conducting Jeffery fluid flow containing microorganisms via a porous vertical conduit is proposed. The expressions for the flow quantities are established by solving the governing equations of this study analytically using the homotopy perturbation method (HPM). A detailed examination is performed using the tables and graphical representations to comprehend the impact of significant components on this analysis. In addition, the results for Newtonian nanofluid are obtained as a special case and discovered that its velocity is lower than the Jeffrey nanofluid. It is observed that the best velocity distribution can be seen at larger thermal Grashof number and Darcy number. The size of the trapped bolus enhances with the increase of the Hall parameter. Furthermore, the density of the motile microorganism distribution declines for higher bioconvection Peclet number and bioconvection constant.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3