Affiliation:
1. National School of Engineers of Sfax (ENIS), Laboratory of Electro-Mechanic Systems (LASEM), University of Sfax (US), Sfax, Tunisia
Abstract
The goal of this paper is to study and optimize the conical chimney angle (α) of a divergent solar chimney power plant (DSCPP) by using CFD technique. The local airflow characteristics were analyzed in four configurations with different conical angles α = 0°, α = 3°, α = 6° and α = 9°. The first design is validated experimentally by using a pilot prototype build at the National School of Engineers of Sfax, Tunisia. In addition, some experimental results of the temperature, the velocity and the power output were presented during a typical day. A novel mathematical correlation was developed to prove the effect of the conical angle and the DSCPP scale on the power output. In fact, the relationship between the optimum conical angle and the system scale was performed based on both quadratic and cubic regressions. The computational results ensure that the conical chimney angle presents a parabolic tendency with the turbulence airflow characteristics and the power output. The performance of the DSCCP was degraded since the conical angle is greater than α = 3°. Furthermore, the optimum angle decreases with an increasing system scale. A commercial solar chimney with a conical angle around α = 1° presents an efficient system.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献