An application of artificial neural network (ANN) for comparative performance assessment of solar chimney (SC) plant for green energy production

Author:

Mandal Dipak KumarORCID,Biswas NirmalenduORCID,Manna Nirmal K.ORCID,Gayen Dilip KumarORCID,Benim Ali CemalORCID

Abstract

AbstractThis study aims to optimize the power generation of a conventional Manzanares solar chimney (SC) plant through strategic modifications to the collector inlet height, chimney diameter, and chimney divergence. Employing a finite volume-based solver for numerical analysis, we systematically scrutinize influential geometric parameters, including collector height (hi = 1.85 to 0.1 m), chimney inlet diameter (dch = 10.16 to 55.88 m), and chimney outlet diameter (do = 10.16 to 30.48 m). Our findings demonstrate that reducing the collector inlet height consistently leads to increased power output. The optimal collector inlet height of hi = 0.2 m results in a significant power increase from 51 to 117.42 kW (~ 2.3 times) without additional installation costs, accompanied by an efficiency of 0.25%. Conversely, enlarging the chimney diameter decreases the chimney base velocity and suction pressure. However, as turbine-driven power generation rises, the flow becomes stagnant beyond a chimney diameter of 45.72 m. At this point, power generation reaches 209 kW, nearly four times greater than the Manzanares plant, with an efficiency of 0.44%. Nevertheless, the cost of expanding the chimney diameter is substantial. Furthermore, the impact of chimney divergence is evident, with power generation, collector efficiency, overall efficiency, and collector inlet velocity all peaking at an outer chimney diameter of 15.24 m (corresponding to an area ratio of 2.25). At this configuration, power generation increases to 75.91 kW, approximately 1.5 times more than the initial design. Remarkably, at a low collector inlet height of 0.2 m, combining it with a chimney diameter of 4.5 times the chimney inlet diameter (4.5dch) results in an impressive power output of 635.02 kW, signifying a substantial 12.45-fold increase. To model the performance under these diverse conditions, an artificial neural network (ANN) is effectively utilized.

Funder

Hochschule Düsseldorf University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Reference71 articles.

1. Pradhan, S., Chakraborty, R., Mandal, D. K., Barman, A. & Bose, P. Design and performance analysis of solar chimney power plant (SCPP): A review. Sustain. Energy Technol. Assess. 47, 101411 (2021).

2. Mandal, D. K., Pradhan, S., Chakraborty, R., Barman, A. & Biswas, N. Experimental investigation of a solar chimney power plant and its numerical verification of thermo-physical flow parameters for performance enhancement. Sustain. Energy Technol. Assess. 50, 101786 (2022).

3. Das, P. & Chandramohan, V. P. A review on solar updraft tower plant technology: Thermodynamic analysis, worldwide status, recent advances, major challenges and opportunities. Sustain. Energy Technol. Assess. 52, 102091 (2022).

4. Biswas, N., Mandal, D. K., Bose, S., Manna, N. K. & Benim, A. C. Experimental treatment of solar chimney power plant—A comprehensive review. Energies 16, 6134 (2023).

5. Mehranfar, S. et al. Comparative assessment of innovative methods to improve solar chimney power plant efficiency. Sustain. Energy Technol. Assess. 49, 101807 (2022).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3