Affiliation:
1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures Shijiazhuang Tiedao University Shijiazhuang China
2. Innovation Center for Wind Engineering and Wind Energy Technology of Hebei Province Shijiazhuang China
3. Department of Mathematics and Physics Shijiazhuang Tiedao University Shijiazhuang China
4. School of Civil Engineering Shijiazhuang Tiedao University Shijiazhuang China
5. School of Physical Science and Engineering Beijing Jiaotong University Beijing China
Abstract
AbstractSolar chimneys may induce natural ventilation through solar radiation. However, sufficient theoretical studies are needed as a basis to fully exploit passive design in practical green building design. In this work, we investigate the heat transfer properties of turbulent natural convective flows in a combined solar chimney with a thermal flux at the absorption wall by means of theoretical analysis and numerical simulations. Two different flow patterns have been found, one with a clear thermal boundary layer flow pattern and the other without, based on high Rayleigh numbers. For flow development in these two flow regimes, the transient scaling analysis is performed separately and the control mechanism for each phase is presented. Some new scale relationships are established to characterize the ventilation performance of solar chimneys, including thermal boundary layer thickness δT, velocity vT, mass flow m, and so on. For the distinct thermal boundary layers, δT,s ~ HΓ2/5/Bo1/5κ2/5, vT,s ~ Bo2/5κ4/5Γ1/5/H, m ~ ρBo1/5κ2/5Γ3/5. For nonobvious thermal boundary layers, vT,f ~ Bo1/3κ/H2/3W1/3, m ~ ρBo1/3κ/A2/3. The important scale relationships are validated using corresponding numerical simulation data, such as the mass flow rate scale M ~ (Γ/κ)3/5Bo1/5 in the distinct thermal boundary layer flow state, and so on. The air changes per hour and heat exchange efficiencies are calculated for a solar chimney with a fixed height‐to‐width ratio to provide a basis for the design of a solar chimney.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献