Numerical simulation of cavitating flow in a centrifugal pump as turbine

Author:

Li Wenguang1,Zhang Yuliang2

Affiliation:

1. Department of Fluid Machinery, Lanzhou University of Technology, Gansu, PR China

2. College of Mechanical Engineering, Quzhou University, Zhejiang, PR China

Abstract

In this study, the cavitating flow and cavitation performance are studied by employing the computational fluid dynamics method in the turbine mode of a centrifugal pump at part-load, best efficiency, and over-load points. The flow models are validated in the pump mode under noncavitation condition. The relationships between the performance variables and net positive suction head available are obtained, and the corresponding net positive suction heads required are extracted. The flow patterns, location, and shape of the cavity are illustrated; the pressure coefficient profiles on the blade surfaces are clarified and compared with those in the pump mode under both noncavitation and critical cavitation conditions. The cavitation performance and flow pattern as well as cavity shape in the turbine mode are distinguishably different from the pump mode. It is found out that the cavitation behavior in the turbine mode exhibits three notable features: a lower and less flow rate-dependent net positive suction head required, a flow rate-dependent suppressed rotational flow in the draft tube, as well as a rotational and extendable cavitating rope originated from the impeller cone. The results and methods can be important and useful for the design and selection of a centrifugal pump as turbine.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3