Slip velocity and field information of two-phase cavitating flows

Author:

Ge MingmingORCID,Apte Dhruv1ORCID,Wang ChuanORCID,Zhang GuangjianORCID,Zhang XinleiORCID,Coutier-Delgosha Olivier1ORCID

Affiliation:

1. Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech 1 , Blacksburg, Virginia 24060, USA

Abstract

In this work, laser-induced florescent particle image velocimetry was performed to measure simultaneously the liquid and vapor velocity fields at the mid-span of a small-scale Venturi type section to determine the presence of a slip velocity between the phases. Various dynamic behavior and Kelvin–Helmholtz (K-H) instability involved in the cloud cavity shedding regime are discussed at four different cavitation numbers. The velocity, vorticity, and turbulence field information of the two phases are analyzed. The liquid–vapor mixture in a cavitating flow is usually considered a homogeneous medium in currently used computational models, but it is shown in this study that the two phases have very different dynamics. The measurements of the time-averaged velocities highlight the existence of a noteworthy slippage between the liquid and the vapor phases, especially in the upstream part of the cavitation region, where the slippage between the two phases can reach about 50% of the liquid velocity. Using phase-locked average, it is shown that the slip velocity in the upstream region is mainly located at the upper liquid–vapor interface, while the slip velocity in the closure area is near the bottom wall, due to the reentrant jet. These results contradict a primary assumption of the current models, where the medium is usually considered as a homogeneous mixture with a unique velocity field, thus providing a reference for future computational model improvement.

Funder

U.S. Naval Research Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3