Heat transfer characteristics of magnetohydrodynamic two fluid oscillatory flow in an inclined channel with saturated porous medium

Author:

Bala Anasuya J1ORCID,Srinivas Suripeddi1ORCID

Affiliation:

1. School of Advanced Science, VIT-AP University, Amaravathi, India

Abstract

This investigation aims to examine the hydromagnetic flow of two liquid flows of fully developed incompressible Newtonian fluid in an inclined channel through the porous medium accounting for radiative heat flux, Joule heating, and viscous dissipation. The walls of the channel are maintained at different temperatures. A double perturbation method is employed to derive analytical results for velocity and temperature. Graphical results are presented for various arising parameters such as Hartmann number, Grashoff number, ratio of viscosity parameter, thermal conductivity ratio, and porous parameter. Further, the results for mass flux are presented in a tabular form and discussed. Reduction in the velocity and temperature distribution is observed by enhancing Darcy dissipation and frequency parameter. As the angle of inclination increases, there is a rise in flow and heat distribution. With the strength of the magnetic field and the rise in the Reynolds number, the mass flux decreases. A comparative study is carried out with the previously published work and the results are found to be in good agreement.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3