Second Law Analysis for Two-Immiscible Fluids Inside an Inclined Channel in the Presence of a Uniform Magnetic Field and Different Types of Nanoparticles

Author:

Shahri M. F.,Sarhaddi F.

Abstract

AbstractMagnetohydrodynamic entropy generation of two immiscible fluids inside an inclined channel in the presence of different types of nanoparticles is examined. Channel consists of two regions, one Newtonian clear fluid and another Newtonian nanofluid with water as the base fluid and different nanoparticles including copper (Cu), copper oxide (CuO), aluminum oxide (Al2O3) and titanium dioxide (TiO2). Governing equations are solved with homotopy analysis method to highlight the effect of magnetic parameter, Grashof number, inclination angle and solid volume fraction on the total entropy generation for all types of nanoparticles. Results demonstrate that increasing of Grashof number, inclination angle and solid volume fraction amplifies the total entropy generation, while the enlargement of magnetic parameter reduces it especially for solid volume fractions greater than 15%. Among the several case studies performed, it is seen that water-TiO2 nanofluid is the best nanofluid from the viewpoint of entropy generation minimization. It is also found that the maximum total entropy generation is 1.268 and takes place for water-Cu nanofluid. Moreover, it is observed that the entropy generation component due to heat conduction of water-Cu nanofluid occupies 33.62% of the maximum total entropy generation and consequently that is the main cause of irreversibility in this study.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3