Identification of cavitation in centrifugal pump by artificial immune network

Author:

Matloobi Seyed M1ORCID,Riahi Mohammad1

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Reducing the cost of unscheduled shutdowns and enhancing the reliability of production systems is an important goal for various industries; this could be achieved by condition monitoring and artificial intelligence. Cavitation is a common undesired phenomenon in centrifugal pumps, which causes damage and its detection in the preliminary stage is very important. In this paper, cavitation is identified by use of vibration and current signal and artificial immune network that is modeled on the base of the human immune system. For this purpose, first data collection were done by a laboratory setup in health and five stages damage condition; then various features in time, frequency, and time–frequency were extracted from vibration and current signals in addition to pressure and flow rate; next feature selection and dimensions reduction were done by artificial immune method to use for classification; finally, they were used by artificial immune network and some other methods to identify the system condition and classification. The results of this study showed that this method is more accurate in the detection of cavitation in the initial stage compared to methods such as non-linear supportive vector machine, multi-layer artificial neural network, K-means and fuzzy C-means with the same data. Also, selected features with artificial immune system were better than principal component analysis results.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3