Centrifugal Pump Cavitation Fault Diagnosis Based on Feature-Level Multi-Source Information Fusion

Author:

Song Mengbin1,Zhi Yifan2,An Mengdong3,Xu Wei4,Li Guohui5,Wang Xiuli3

Affiliation:

1. LEO Group Hunan Pump Co., Ltd., Jiuhua Demonstration Zone, Xiangtan 411201, China

2. China Nuclear Power Engineering Co., Ltd., Beijing 100840, China

3. Research Center of Fluid Machinery Engineering and Technology, Zhenjiang 212013, China

4. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China

5. GongQing Institute of Science and Technology, Jiujiang 332020, China

Abstract

In nuclear power systems, centrifugal pumps often need to operate under extreme conditions. However, accurately determining the cavitation status of centrifugal pumps under such extreme conditions is challenging. To improve the recognition accuracy of the three statuses of non-cavitation, incipient cavitation, and severe cavitation while improving the anti-interference capability of the monitoring system, this study extracted cavitation features from centrifugal pumps’ motor current and vibration signals under three different operational conditions. It fused the features using feature-level multi-source information fusion (MSIF) based on the backpropagation neural network (BPNN) or support vector machine (SVM) to construct a cavitation status recognition model and analyzed the results to compare with those of recognition without information fusion. The results show that, compared with one signal source, MSIF can significantly improve the recognition accuracy of cavitation statuses. Combined current and pump casing axial monitoring based on the BPNN is the optimal scheme, with an overall recognition accuracy of 97.3% for all operational conditions, compared to 73.9% for the single current signal and 89.3% for the single casing axial vibration signal. These research results can guide the monitoring of cavitation statuses in practical engineering, as well as timely intervention at incipient cavitations to reduce structural damage to centrifugal pumps and prolong service life.

Funder

Shandong Province science and technology SMES innovation ability improvement project

Technology Support Plan

Key projects of the joint fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning for fault diagnosis of monoblock centrifugal pumps: a Hilbert–Huang transform approach;International Journal of System Assurance Engineering and Management;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3