Affiliation:
1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
Abstract
In the present research work, an in-house developed fixture is used to achieve taper profiles which avoids the disadvantages in convention tapering operation in wire electric discharge machining like wire bend, inaccuracies in taper, insufficient flushing, guide wear etc. A simple triangular profile was machined at 0°, 15° and 30° slant/taper angles. These taper profile areas are investigated for various machining parameters like wire guide distance, corner dwell time, wire offset and cutting speed override. It is observed that as the wire guide distance and cutting speed override increases, the profile area decreases. Whereas in case of wire offset, as offset increases the profile areas also increase. The corner dwell time parameter do not effect on the profile area. The taper profile areas measured highest at 30° followed by 15° and 0° slant angles. This is due to the workpiece placed at different angles during machining with the aid of fixture to obtain taper profile. The taper angle represents the angularity of slant triangular profiles. As the slant angle increases the variation in taper error also increases due to higher wire vibration. An artificial neural network model is developed for the prediction of these areas at a different slant angle. The model is validated experimentally where the errors in prediction ranged from 1% to 9%. In conclusion, it can be noticed that the machining parameters and slant angle influence on profiles irrespective of their dimensions.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献