Artificial neural network-based prediction assessment of wire electric discharge machining parameters for smart manufacturing

Author:

Manoj Itagi Vijayakumar1,Narendranath SannaYellappa2,Mashinini Peter Madindwa3,Soni Hargovind4,Rab Shanay5,Ahmad Shadab6,Hayat Ahatsham7

Affiliation:

1. Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology , Bengaluru 560064, Karnataka, 560064 , India

2. Department of Mechanical Engineering, National Institute of Technology Karnataka Surathkal , Surathkal , 575025 , India

3. Department of Mechanical & Industrial Engineering Technology, University of Johannesburg , PO Box 524 , Auckland Park , 2006 , South Africa

4. Department of Mechanical Engineering, National Institute of Technology Delhi , Delhi , 110036 , India

5. School of Architecture, Technology, and Engineering, University of Brighton , Brighton BN2 4GJ , UK

6. School of Mechanical Engineering, Shandong University of Technology , Zibo 255000 , China

7. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln , Lincoln , NE , USA

Abstract

Abstract Artificial intelligence (AI), robotics, cybersecurity, the Industrial Internet of Things, and blockchain are some of the technologies and solutions that are combined to produce “smart manufacturing,” which is used to optimize manufacturing processes by creating and/or accepting data. In manufacturing, spark erosion technique such as wire electric discharge machining (WEDM) is a process that machines different hard-to-cut alloys. It is regarded as the solution for cutting intricate parts and materials that are resistant to conventional machining techniques or are required by design. In the present study, holes of different radii, i.e. 1, 3, and 5 mm, have been cut on Nickelvac-HX. Tapering in WEDM is a delicate process to avoid disadvantages such as wire break, wire bend, wire friction, guide wear, and insufficient flushing. Taper angles viz. 0°, 15°, and 30° were obtained from a unique fixture to get holes at different angles. The study also shows the influence of taper angles on the part geometry and area of the holes. Next, the artificial neural network (ANN) technique is implemented for the parametric result prediction. The findings were in good agreement with the experimental data, supporting the viability of the ANN approach for the evaluation of the manufacturing process. The findings in this research provide as a reference to the potential of AI-based assessment in smart manufacturing processes and as a design tool in many manufacturing-related fields.

Publisher

Walter de Gruyter GmbH

Subject

Behavioral Neuroscience,Artificial Intelligence,Cognitive Neuroscience,Developmental Neuroscience,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3