Performance characterization of powder mixed wire electrical discharge machining technique for processing of Ti6Al4V alloy

Author:

Chakraborty Sadananda1ORCID,Mitra Souren1,Bose Dipankar2

Affiliation:

1. Production Engineering Department, Jadavpur University, India

2. Mechanical Engineering Department, NITTTR Kolkata, India

Abstract

Precision machining characteristics with high-dimensional accuracy make the material more adaptable towards the applications. The present study employs the powder mixed wire electrical discharge machining process to machine Ti6Al4V alloy material. In spite of limited drawbacks and enhanced output in the powder mixed wire electrical discharge machining process, the present problem has been formulated for improving the machining efficiency of Ti6Al4V. The impact of suspended powder characteristics on responses, that is, material removal rate and surface roughness, is examined throughout the process. The current investigation also focuses on the interaction effect of machining constraints along with Al2O3 abrasive mixed dielectric to achieve economical machining output for the Ti6Al4V material. An effort has been presented to obtain optimal solutions using the different methodologies, namely response surface methodology, grey relation analysis, and particle swarm optimization. The study reveals that discharge energy is deeply influenced by the peak current and pulse off time followed by powder concentration in the powder mixed wire electrical discharge machining process. The maximum material removal rate of 6.628 mm3/min and average surface finish of 1.386 μm are the outcome of the present study for a set of optimal machining settings, that is, pulse off time ( Toff) of 7.247 μs, pulse on time ( Ton) of 30 μs, peak current ( Ip) of 2 A, and powder concentration of 4 g/L. Finally, the proposed model has been verified that the hybrid particle swarm optimization technique has the highest adequate capability to achieve maximum output. Thus, the approach offered an enhancement on performance measures of Ti6Al4V alloy in the powder mixed wire electrical discharge machining process.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3