Secondary Processing of Aramid with AWJ and Optimization with NSGA-III

Author:

Kahya Müge1,Doğankaya Emre1,Çaylan Ömer2ORCID,Büke Zarife Göknur2,Ünver Hakkı Özgür1ORCID

Affiliation:

1. Advanced Manufacturing Laboratory, Department of Mechanical Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Söğütözü 06560, Ankara, Turkey

2. Department of Material Science and Nanotechnology Engineering; Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Söğütözü Cad. 43, Söğütözü 06560, Ankara, Turkey

Abstract

The secondary operations of composite parts are performed following thermal cure processes, which generate the final dimensions with desired tolerance and quality specifications. High-strength composites, on the other hand, especially aramid fiber-reinforced polymers (AFRP), are not suitable for conventional machining operations due in part to high operational costs and limited surface quality characterized by fuzziness and delamination. Abrasive Water Jet (AWJ) has been recently shown promising results in obtaining improved surface quality while ensuring significant cost advantages. This study investigates the AWJ processing of AFRP by implementing the analysis of variance and response surface methods. The effects of the control parameters (sand ratio, pressure, stand-off-distance, and feed rate) on the surface quality metrics (surface roughness, kerf angle, and dimensional error) are identified and comparatively evaluated. The surface quality of the AWJ processed AFRP specimens are investigated using Scanning Electron Microscopy (SEM). The trade-offs between the measured tolerances and surface roughness values are identified via a new genetic algorithm approach: Non-dominated Sorting Genetic Algorithm (NSGA-III). Also, operation regions are determined using the generated Pareto curves while improving the quality of various features of an AFRP component, critical to its functional performance during extended service life. As a result, the lowest Ra values obtained were 4.135 µm for trimming, 5.962 µm for pocketing, and 4.696 µm for the hole-making operation. The maximum error in the accuracy of operating regions yields to 7% with independent measurements for validation.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3