Sub-Fiber Scale Precision Dicing of Aramid Fiber-Reinforced Plastic Composites

Author:

Wen Quan,Hu Jintao,Yuan ZeweiORCID

Abstract

Aramid fiber-reinforced plastic (AFRP) composites are widely used in aerospace, rail transit, marine and military industries, due to their high specific strength, high impact resistance, fatigue resistance and excellent designable properties. In order to meet different application requirements, cutting processes need to be carried out, such as window opening, edge cutting and slit cutting. However, the characteristics of high tensile strength and toughness, low interlaminar strength, non-uniformity and anisotropy make AFRP composites a difficult-to-machine material. They are prone to produce rough cutting surfaces and cutting damages including burr, wire drawing, delamination, resin burn, material flanging, etc. To solve this problem, the ultra-thin diamond dicing blade was used for high-speed cutting of AFRP composites in sub-fiber scale in this research. The influence of process parameters on cutting force, cutting temperature, maximum spindle current, tool wear and cutting surface quality were investigated by establishing the cutting force model, L16(45) orthogonal experiment, single factor experiment, range analysis and variance analysis. The theoretical and experimental results show that cutting AFRP composites with ultra-thin diamond dicing blade can obtain smooth surfaces without common cutting damages. When the cutting speed is 91.11 m/s (spindle speed n = 30,000 r/min), the cutting depth is 0.2 mm and the feed speed is 5 mm/s, the surface roughness Ra can be as low as 32 nm, which realize the precision cutting of AFRP composites.

Funder

National Natural Science Foundation of China

Basic Research Foundation of Liaoning Province Universities

Liaoning Revitalization Talents Program

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Image Correlation for Elastic Strain Evaluation during Focused Ion Beam Ring-Core Milling;Journal of Manufacturing and Materials Processing;2024-07-04

2. Reducing delamination risk with response surface methodology-supported drilling analysis for Nomex® aramid fiber composites;Journal of Composite Materials;2023-12-26

3. Study of dicing mechanism influence on PZT-4H composite performance;The International Journal of Advanced Manufacturing Technology;2023-11-14

4. Experimental study on milling and milling-grinding composite machining of AFRP;The International Journal of Advanced Manufacturing Technology;2023-10-18

5. Experimental study on influence mechanism of fiber orientation angle in AFRP cutting;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3