Analysis of the effects of lubricating oil viscosity and engine speed on piston-cylinder liner frictions in a single cylinder HCCI engine by GT-SUITE program

Author:

Kunt M. Akif1ORCID,Calam Alper2,Gunes Haluk1ORCID

Affiliation:

1. Department of Motor Vehicles and Transportation Technology, Tavsanli Vocational Training School, Dumlupinar University, Kutahya, Turkey

2. Technical Sciences Vocational High School, Gazi University, Ankara, Turkey

Abstract

Engines with homogenous charge compression ignition (HCCI) are the low-temperature combustion models in which automatic oxidation reactions occur with the effect of in-cylinder pressure and heat at the end of preparation of homogenous air-fuel mixture and compression stroke within the cylinder by means of port injection or early direct injection. In-cylinder gas temperatures of such engines during the cycle are lower than conventional internal combustion engines. Therefore, they cause zero NOx and soot emissions. Moreover, the occurrence of combustion in very small crankshaft angles results in a decrease in heat losses observed in cylinder walls and an increase in thermal efficiency. Reducing mechanical friction is highly significant for increasing the effective productivity of HCCI engines. In internal combustion engines, 10% of total energy obtained from the fuel is spent on the heat emerging due to mechanical frictions. 20% of mechanical friction results from the friction occurring between piston ring and liners. In this article, frictional characteristics of compression ring (TOP) and piston skirt area have been examined for two different engine speeds and lubricants, by using technical properties of single-cylinder HCCI engine and in-cylinder pressure and temperature data obtained under full load by means of GT-SUITE software. As the increase in pressure, occurring inside the cylinder at the end of the exhaust stroke and at the beginning of intake stroke, increases ring pressure load in HCCI engines, higher level of piston ring frictions has been observed when compared to internal combustion engines with the same technical properties. Piston ring contact pressure force is a more effective parameter in terms of piston frictions, when compared to hydrodynamic pressure force. The use of lubricants with higher viscosity (SAE 10W-40) has enabled the piston to move more laterally. According to the analysis results, a maximum piston speed of 3.92 m/s for 800 rpm engine speed and 7.85 m/s for 1600 rpm engine speed has been obtained. Maximum friction power losses have been found as 63.84 W at 800 rpm engine speed and 85.91 W at 1600 rpm engine speed. Oil film thickness has obtained in the middle of the piston stroke in the intake, compression, power and exhaust strokes, respectively, 1.809, 1.674, 1.547 and 1.792 µm at 800 rpm engine speed and 1.101, 1.018, 0.932 and 1.119 µm at 1600 rpm engine speed.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3