Investigation of the effect of ultrasonic vibration on the performance of the friction drilling by FEM simulation

Author:

Ansari Parsa1ORCID,Kazemi Ghouhaki Reza1,Ahmadi Farshid1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

The friction drilling process is very important in various industries such as automotive, aerospace, and oil and gas industries. Therefore, they have always sought to find methods to improve this process. One of these methods is to optimize the application of ultrasonic vibrations in the process, and limited research has been done in this regard. The current research aims to investigate the effect of ultrasonic vibrations simultaneously with the parameters of drilling on the friction drilling process to optimize this process with the help of finite element simulation. Due to the nature of the complex transformations of the process, a Coupled Eulerian–Lagrangian model of the process was first created in the Abaqus software. Then, the process simulation was carried out in the presence and absence of ultrasonic vibrations. Rotational speed, feed rate, and amplitude of vibrations are the influencing parameters, and sheet temperature and axial force, and torque applied to the tool are the parameters investigated in this research. The results show that higher rotation speed and lower feed rate lead to a reduction of axial force and torque. Also, the application of ultrasonic vibration reduces up to 50.48% the axial force and up to 46.67% torque, and this reduction is improved by increasing the range of vibrations. The optimal mode was selected After analyzing 12 different modes based on the lowest amount of axial force and torque on the pin. It was found that the ideal mode occurs at a feed rate of 4.23 m/s and a rotation speed of 3000 rpm, with a 20-µm range. These findings and optimizing drilling parameters bring new horizons in material bonding techniques in various industries.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3