Investigation of ultrasonic vibration on thrust force, surface integrity, and geometrical tolerances during drilling of natural filler reinforced composites

Author:

Pashmforoush Farzad1ORCID,Farshbaf Zinati Reza2ORCID,Maleki Davoud2

Affiliation:

1. Faculty of Engineering, Department of Mechanical Engineering, University of Maragheh, Maragheh, Iran

2. Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

Growing global environmental threats have attracted researchers and engineers toward design and manufacture of green materials. In this regard, natural filler reinforced composites are environmentally friendly, cost-effective materials with a lot of advantages over conventional carbon/glass fiber reinforced composites. Hence, in this study, the drilling performance of walnut shell powder reinforced composite material was experimentally investigated. For this purpose, the composite specimens were first fabricated by injection molding process, followed by further drilling tests, which were performed with and without ultrasonic vibration. The effect of drilling parameters and ultrasonic vibration was investigated on surface roughness, thrust force and geometrical tolerances (circularity and cylindricity), as the process performance parameters. The obtained results demonstrated that by increase of the spindle rotational speed and decrease of feed rate, the thrust force, surface roughness and geometrical tolerances were reduced. Also, it was seen that ultrasonic vibration could effectively enhance the performance parameters, which was attributed to the intermittent cutting process and impact action of ultrasonic vibration, leading to reduced friction, improved material removal, reduced cutting forces, and better surface quality.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3